∂E(t)κe(t)d H 1表示E(t)曲率的平均值(t)。在物理文献中已经提出了这种类型的进化,作为使现象的模型[31,32]。像Mullins-sekerka流一样,集合E(t)的面积沿流量保存,周长不侵扰。曲率流的另一个重要特征是,它可以正式视为周长的L 2-级别流。通常,对(1.1)和(1.2)的平滑解决方案可能会在有限的时间内产生奇异性(例如,请参见[10,10,26,27])。利用所考虑的两个流的梯度流结构,可以通过最小化移动方案(在[3,25]中引入此设置),将弱解定义为(1.1)和(1.2)。此方案定义连续流的离散时间近似,通常称为离散流,具体取决于时间参数h。l 1-限速点为离散流的h→0称为平流,因此,在每次t∈[0,∞)时定义了集合e(t)的家族e(t)。在构建了这个全球范围的弱解决方案后,研究其渐近学是一个自然的问题。关于这些几何流量的解决方案的渐近行为有广泛的文献。一方面,在初始基准的各种几何假设下,一个人能够显示出(1.1)或(1.2)的平滑解决方案的全球及时存在,并表征其渐近行为。关于Mullins-Sekerka流,我们引用了[1,6,11,14],而某些对体积的平均曲率流量的参考为[4、5、5、12、9、34]。另外,人们可以直接研究离散的流量或流量,鉴于最近对所考虑的流量的弱唯一性的结果,这种观点已经获得了显着的兴趣。特别是,这些结果表明,只要存在(1.1)或(1.2)的经典解决方案,任何流动的流量就与之重合。在[13,16]中的(1.1)(在二维中)和[17]中的(1.2)中已证明这一点,在初始数据上的某些规律性假设下,另请参见[23],对于弱的唯一性,对于弱的唯一性结果,导致体积预状的弱弱概念的弱含量是平均平均曲率曲率。在平均曲率流(1.2)的欧几里得设置r 2和r 3中的情况已被很好地理解。第一个结果涉及融合向浮游向球的翻译的收敛,如[21]在n = 2,3。后来,由于具有尖锐指数的Alexandrov定理的新颖定量版本,在[29]中,作者证明了离散流向球,指数速率的收敛,没有其他翻译。随后,他们设法将这项研究扩展到[20,19]中更具挑战性的浮动案例。另请参见[22],有关平面各向异性情况的类似结果。在[20,19]中再次包含t 2中(1.1)的流量溶液的结果,假设初始基准e 0具有固定的阈值。在t 2中,这构成了初始基准e 0满意p(e 0)<2。这个问题至关重要。我们将重点放在平面,定期设置t 2上。在定期设置T N的确,由于流量不会增加周长,因此流量的唯一可能的限制点是球的工会,因此作者可以实质上应用它们在R 2中获得的稳定性结果而不会发生太大变化。
主要关键词